## WELCOME

## Math 2

Chapter 12: Quadratics: Domain, Range, Intercepts, and Intervals

Last Night's HW:
Tonight's HW:

## Warm Up

| $x$ |  |
| :--- | :--- |
| -3 |  |
| -2 |  |

1. Complete the table for: $f(x)=x^{2}-3$
2. Distribute \& put in standard form: $f(x)=5+x(6-x)$
3. Identify $\mathrm{a}, \mathrm{b}$ \& $\mathrm{c}: f(x)=-x^{2}-20$

## Chapter 12 Section 3 Learning Target

Given a quadratic function I can determine the domain, range, intervals of increase and decrease, and identify the

[^0]Interval:

| Open Interval | Closed Interval | Half Open/Closed |
| :--- | :--- | :--- |
| describes... |  |  |
|  |  | describes... |
|  |  |  |
|  |  |  |

Note on $\infty$ :

## Use interval notation to describe the interval in which:

a) all numbers are more than 7 .
b) all numbers are less than or equal to -5 .
c) any real number.
d) The function is Increasing/Decreasing


## Interval Notation

| Open | Closed | Half Open/Closed |
| :--- | :--- | :--- |
| Used on intervals that <br> are between but not <br> equal to. | Used on intervals that <br> are between and equal <br> to the endpoints. | A combination of open <br> and closed ends to an <br> interval. |
|  |  |  |
|  |  |  |

Suppose you launch a water balloon in a sling from ground level. You can model the motion of the balloon using a vertical motion model.

$$
f(t)=-8 t^{2}+V_{o} t+h_{o}
$$

$V_{o}:$

$$
h_{o}:
$$

1. Write a function for a balloon that is launched from a height of 0 ft and a velocity of $80 \mathrm{ft} / \mathrm{s}$.
2. The following graph is of the function you wrote above.
a) What function family does the function belong to? What is the domain/range?

b) What is the graphs Max/Min?
c) What does it represent?
d) What are the graphs Zeroes ( $x$-int)?
e) What do they represent?

## Domain:

This is the set of possible inputs. (independent)

## Range:

This is the set of related outputs . (dependent)


Domain
Ex:
Time in Hours

## Zeroes \& Y-Intercepts

## x-intercepts zeros:

These are the point(s) where the parabola crosses the x-axis.
( $y$-value always equals zero)

$$
(-1,0)_{\&}(4,0)
$$

y -intercepts:
This is the point where the parabola crosses the $y$-axis.
(x-value always equals zero)

$$
(0,-4)
$$

$$
f(x)=x^{2}-2 x-3
$$

## How to Find The y-intercept

For every parabola there is exactly one y-intercept

| Graphically | Table |  |  | Formula |
| :---: | :---: | :---: | :---: | :---: |
| Look for the place the parabola crosses the $y$ axis. | Look for the point where the $x$-value is equal to zero |  |  | We can find the $y$-int by plugging in zero for $x$ |
| $(0,3)$ | $\mathbf{x}$ | $\mathrm{f}(\mathrm{x})$ |  | $f(x)=x^{2}-2 x-1$ |
|  | -2 | 0 |  | $f(0)=0^{2}-2(0)-1$ |
|  | -1 | 3 |  | $f(0)=0-0-1$ |
|  | 0 | 4 |  | $f(0)=-1$ |
|  | 1 | 3 | $(0,4)$ |  |
|  | 2 | 0 |  | $(0,-1)$ |

## How to Find The x-int's/roots/zeros

For every parabola there are either 0, 1, or 2 x-intercepts

f) On what interval is the graph increasing? What would this represent?
g) On what interval is the graph decreasing? What would this represent?



[^0]:    Interval Notation

